DocumentCode :
1755759
Title :
Unsupervised evaluation method using Markov random field for moving object segmentation in infrared videos
Author :
Chaobo Min ; Junju Zhang ; Bengkang Chang ; Bin Sun ; Yingjie Li
Author_Institution :
Sch. of Electron. Eng. & Opt.-Electron. Technol., Nanjing Univ. of Sci. & Technol., Nanjing, China
Volume :
8
Issue :
7
fYear :
2014
fDate :
41821
Firstpage :
426
Lastpage :
433
Abstract :
An unsupervised method is proposed for performance evaluation of the moving object segmentation using Markov random field (MRF) in infrared videos. This method focuses on the edge features and takes spatio-temporal information into account. The authors consider an MRF model for each edge point of a segmentation mask in spatial and temporal directions. This problem is then formulated using maximum a posteriori estimation principle to form a criterion of evaluation. Subjective evaluation is applied to measure the performance of the evaluation methods. The results show that the proposed method is superior to other unsupervised measures.
Keywords :
Markov processes; image motion analysis; image segmentation; maximum likelihood estimation; unsupervised learning; video signal processing; MRF model; Markov random field; edge features; infrared videos; maximum a posteriori estimation principle; moving object segmentation; performance evaluation; spatio-temporal information; subjective evaluation; unsupervised evaluation method;
fLanguage :
English
Journal_Title :
Image Processing, IET
Publisher :
iet
ISSN :
1751-9659
Type :
jour
DOI :
10.1049/iet-ipr.2013.0356
Filename :
6852029
Link To Document :
بازگشت