• DocumentCode
    1756481
  • Title

    Aggregation of Graph Models and Markov Chains by Deterministic Annealing

  • Author

    Yunwen Xu ; Salapaka, Srinivasa M. ; Beck, Carolyn L.

  • Author_Institution
    Dept. of Ind. & Enterprise Syst. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
  • Volume
    59
  • Issue
    10
  • fYear
    2014
  • fDate
    Oct. 2014
  • Firstpage
    2807
  • Lastpage
    2812
  • Abstract
    We consider the problem of simplifying large weighted directed graphs by aggregating nodes and edges. This problem is recast as a clustering/resource allocation problem, and a solution method that incorporates features of the deterministic annealing (DA) algorithm is proposed. The novelty in our method is a quantitive measure of dissimilarity that allows us to compare directed graphs of possibly different sizes (i.e., the original and the aggregated graphs). The approach we propose is insensitive to initial conditions and less likely to converge to poor local minima than Lloyd-type algorithms. We apply our graph-aggregation (clustering) method to Markov chains, where low-order Markov chains that approximate high-order chains are obtained through appropriate aggregation of state transition matrices. We further develop a decentralized computational scheme to improve tractability of the algorithm.
  • Keywords
    Markov processes; directed graphs; matrix algebra; DA algorithm; Lloyd-type algorithms; Markov chains; clustering-resource allocation problem; decentralized computational scheme; deterministic annealing; directed graphs; graph models; state transition matrices; weighted directed graphs; Annealing; Clustering algorithms; Markov processes; Optimization; Partitioning algorithms; Resource management; Vectors; Deterministic annealing (DA) algorithm;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2014.2319473
  • Filename
    6804680