Title :
Calibrated Precision Matrix Estimation for High-Dimensional Elliptical Distributions
Author :
Tuo Zhao ; Han Liu
Author_Institution :
Dept. of Oper. Res. & Financial Eng., Princeton Univ., Princeton, NJ, USA
Abstract :
We propose a semiparametric method for estimating a precision matrix of high-dimensional elliptical distributions. Unlike most existing methods, our method naturally handles heavy tailness and conducts parameter estimation under a calibration framework, thus achieves improved theoretical rates of convergence and finite sample performance on heavy-tail applications. We further demonstrate the performance of the proposed method using thorough numerical experiments.
Keywords :
estimation theory; matrix algebra; statistical distributions; calibrated precision matrix estimation; calibration framework; high dimensional elliptical distributions; parameter estimation; semiparametric method; Convergence; Correlation; Covariance matrices; Estimation; Sparse matrices; Symmetric matrices; Vectors; Calibrated Estimation; Elliptical Distribution; Heavy-tailness; Precision Matrix; Precision matrix; Semiparametric Model; calibrated estimation; elliptical distribution; heavy-tailness; semiparametric model;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2014.2360980