DocumentCode :
1758927
Title :
Classical Results on the Stability of Linear Time-Invariant Systems, and the Schwarz Form
Author :
Shorten, Robert ; Narendra, K.S.
Author_Institution :
IBM Res. Ireland, Dublin, Ireland
Volume :
59
Issue :
11
fYear :
2014
fDate :
Nov. 2014
Firstpage :
3020
Lastpage :
3025
Abstract :
The paper deals with the classical results of Routh and Hurwitz, Biehler and Kharitonov, concerning the stability of a linear time invariant differential equation. It is shown that these results follow directly from a Schwarz matrix representation of stable systems.
Keywords :
Routh methods; differential equations; linear systems; matrix algebra; Schwarz form; Schwarz matrix representation; linear time invariant differential equation; linear time-invariant systems; stability; Asymptotic stability; Context; Differential equations; Eigenvalues and eigenfunctions; Polynomials; Stability criteria; Routh Hurwitz; schwarz form; stability of polynomials;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2014.2320303
Filename :
6805598
Link To Document :
بازگشت