• DocumentCode
    1759637
  • Title

    Electrical Characterization of GaP-Silicon Interface for Memory and Transistor Applications

  • Author

    Pal, Arnab ; Nainani, Aneesh ; Zhiyuan Ye ; Xinyu Bao ; Sanchez, E. ; Saraswat, Krishna C.

  • Author_Institution
    Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
  • Volume
    60
  • Issue
    7
  • fYear
    2013
  • fDate
    41456
  • Firstpage
    2238
  • Lastpage
    2245
  • Abstract
    Process conditions of gallium phosphide (GaP) metal-organic chemical vapor deposition growth on silicon (Si) are optimized by material characterization. Thorough investigation of GaP-Si interface at this optimized growth condition is carried out by electrical characterization with the perspective of applying this heterostructure system for improving the performance of logic transistors and retention time of capacitorless single-transistor dynamic RAM (1T-DRAM). Fabricated GaP-Si heterojunction diodes exhibit an ON-OFF ratio of 108 with similar reverse current as the ideal device simulation results signify immunity to the existing antiphase domains. Finally, MOSFET devices with GaP source-drain having subthreshold swing of 70 mV/dec and an ON-OFF ratio of 105 are demonstrated.
  • Keywords
    DRAM chips; III-V semiconductors; MOSFET; chemical vapour deposition; elemental semiconductors; gallium compounds; semiconductor diodes; silicon; 1T-DRAM; GaP source-drain; GaP-Si; GaP-Si heterojunction diodes; GaP-silicon interface; MOSFET devices; capacitorless single-transistor dynamic RAM; electrical characterization; gallium phosphide; heterostructure system; logic transistors; memory applications; metal-organic chemical vapor deposition growth; transistor applications; Antiphase domain and boundary; ON-and OFF-current; heterojunction diode; metal–organic chemical vapor deposition (MOCVD); x-ray diffraction;
  • fLanguage
    English
  • Journal_Title
    Electron Devices, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9383
  • Type

    jour

  • DOI
    10.1109/TED.2013.2264495
  • Filename
    6527356