DocumentCode :
1759798
Title :
A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models
Author :
Matrone, Giulia ; Savoia, Alessandro Stuart ; Terenzi, Marco ; Caliano, G. ; Quaglia, Francesco ; Magenes, G.
Author_Institution :
Univ. degli Studi di Pavia, Pavia, Italy
Volume :
61
Issue :
5
fYear :
2014
fDate :
41760
Firstpage :
792
Lastpage :
804
Abstract :
In modern ultrasound imaging devices, two-dimensional probes and electronic scanning allow volumetric imaging of anatomical structures. When dealing with the design of such complex 3-D ultrasound (US) systems, as the number of transducers and channels dramatically increases, new challenges concerning the integration of electronics and the implementation of smart micro-beamforming strategies arise. Hence, the possibility to predict the behavior of the whole system is mandatory. In this paper, we propose and describe an advanced simulation tool for ultrasound system modeling and simulation, which conjugates the US propagation and scattering, signal transduction, electronic signal conditioning, and beamforming in a single environment. In particular, we present the architecture and model of an existing 16-channel integrated receiver, which includes an amplification and micro-beamforming stage, and validate it by comparison with circuit simulations. The developed model is then used in conjunction with the transducer and US field models to perform a system simulation, aimed at estimating the performance of an example 3-D US imaging system that uses a capacitive micromachined ultrasonic transducer (CMUT) 2-D phased-array coupled to the modeled reception front-end. Results of point spread function (PSF) calculations, as well as synthetic imaging of a virtual phantom, show that this tool is actually able to model the complete US image reconstruction process, and that it could be used to quickly provide valuable system-level feedback for an optimized tuning of electronic design parameters.
Keywords :
acoustic receivers; array signal processing; capacitive sensors; image reconstruction; micromachining; microsensors; optical transfer function; phantoms; sensor arrays; signal conditioning circuits; ultrasonic imaging; ultrasonic propagation; ultrasonic scattering; ultrasonic transducer arrays; μ-beamforming electronics model; 2D phased array; 2D probes; 3D ultrasound system; PSF; US field model; US image reconstruction process; US propagation; US scattering; amplification; anatomical structure; capacitive micromachined ultrasonic transducer; channel integrated receiver; electronic scanning; electronic signal conditioning; electronics integration; optimized electronic design parameter tuning; point spread function; signal transduction; smart microbeamforming strategy; synthetic imaging; ultrasound system modeling; virtual phantom; volumetric CMUT-based ultrasound imaging system simulator; Capacitors; Imaging; Integrated circuit modeling; MATLAB; Mathematical model; Receivers; Transducers;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/TUFFC.2014.2971
Filename :
6805693
Link To Document :
بازگشت