Title :
Adaptive Scheduling in MIMO-Based Heterogeneous Ad Hoc Networks
Author :
Shan Chu ; Xin Wang ; Yuanyuan Yang
Author_Institution :
Motorola Solutions, Holtsville, NY, USA
Abstract :
The demands for data rate and transmission reliability constantly increase with the explosive use of wireless devices and the advancement of mobile computing techniques. Multiple-input and multiple-output (MIMO) technique is considered as one of the most promising wireless technologies that can significantly improve transmission capacity and reliability. Many emerging mobile wireless applications require peer-to-peer transmissions over an ad hoc network, where the nodes often have a different number of antennas, and the channel condition and network topology vary over time. It is important and challenging to develop efficient schemes to coordinate transmission resource sharing among a heterogeneous group of nodes over an infrastructure-free mobile ad hoc network. In this work, we propose a holistic scheduling algorithm that can adaptively select different transmission strategies based on the node types and channel conditions to effectively relieve the bottleneck effect caused by nodes with smaller antenna arrays, and avoid the transmission failure due to the violation of lower degree of freedom constraint resulted from the channel dependency. The algorithm also takes advantage of channel information to opportunistically schedule cooperative spatial multiplexed transmissions between nodes and provide special transmission support for higher priority nodes with weak channels, so that the data rate of the network can be maximized while user transmission quality requirement is supported. The performance of our algorithm is studied through extensive simulations and the results demonstrate that our algorithm is very effective in handling node heterogeneity and channel constraint, and can significantly increase the throughput while reducing the transmission delay.
Keywords :
MIMO communication; antenna arrays; cooperative communication; mobile ad hoc networks; scheduling; telecommunication channels; telecommunication network reliability; MIMO-based heterogeneous ad hoc networks; adaptive scheduling; antenna arrays; channel condition; channel constraint; channel dependency; cooperative spatial multiplexed transmissions; data rate; data transmission wireless devices; degree of freedom constraint; holistic scheduling algorithm; infrastructure-free mobile ad hoc network; mobile computing techniques; mobile wireless applications; multiple-input and multiple-output technique; network topology; node heterogeneity; peer-to-peer transmissions; special transmission support; transmission capacity; transmission delay; transmission failure; transmission resource; user transmission quality; weak channels; wireless technologies; Ad hoc networks; Antenna arrays; MIMO; Peer-to-peer computing; Receivers; Transmitting antennas; Distributed networks; MIMO; Mobile computing; Network Architecture and Design; Wireless communication; ad hoc networks; cross-layer design; distributed; scheduling;
Journal_Title :
Mobile Computing, IEEE Transactions on
DOI :
10.1109/TMC.2013.112