DocumentCode :
1759914
Title :
Bias-compensated normalised LMS algorithm with noisy input
Author :
Kang, Bing ; Yoo, Jerald ; Park, Pyeongyeol
Author_Institution :
Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., Pohang, South Korea
Volume :
49
Issue :
8
fYear :
2013
fDate :
April 11 2013
Firstpage :
538
Lastpage :
539
Abstract :
A new bias-compensated normalised least mean square (NLMS) algorithm for parameter estimation with a noisy input is proposed. The algorithm is obtained from an approximated cost function based on the statistical properties of the input noise and involves a condition checking constraint to decide whether the weight coefficient vector must be updated. Simulation results show that the proposed algorithm is more robust and accurate than the conventional method.
Keywords :
adaptive filters; least mean squares methods; parameter estimation; bias compensated normalised LMS algorithm; condition checking constraint; input noise; least mean square algorithm; noisy input; parameter estimation; statistical properties;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2013.0246
Filename :
6527546
Link To Document :
بازگشت