DocumentCode :
1761043
Title :
Real-Time Detection of Traffic From Twitter Stream Analysis
Author :
D´Andrea, Eleonora ; Ducange, Pietro ; Lazzerini, Beatrice ; Marcelloni, Francesco
Author_Institution :
Res. Center “E. Piaggio”, Univ. of Pisa, Pisa, Italy
Volume :
16
Issue :
4
fYear :
2015
fDate :
Aug. 2015
Firstpage :
2269
Lastpage :
2283
Abstract :
Social networks have been recently employed as a source of information for event detection, with particular reference to road traffic congestion and car accidents. In this paper, we present a real-time monitoring system for traffic event detection from Twitter stream analysis. The system fetches tweets from Twitter according to several search criteria; processes tweets, by applying text mining techniques; and finally performs the classification of tweets. The aim is to assign the appropriate class label to each tweet, as related to a traffic event or not. The traffic detection system was employed for real-time monitoring of several areas of the Italian road network, allowing for detection of traffic events almost in real time, often before online traffic news web sites. We employed the support vector machine as a classification model, and we achieved an accuracy value of 95.75% by solving a binary classification problem (traffic versus nontraffic tweets). We were also able to discriminate if traffic is caused by an external event or not, by solving a multiclass classification problem and obtaining an accuracy value of 88.89%.
Keywords :
computerised monitoring; data mining; social networking (online); text analysis; traffic engineering computing; Italian road network; Twitter stream analysis; car accidents; event detection; online traffic news Web sites; real-time monitoring system; real-time traffic detection; road traffic congestion; social networks; support vector machine; text mining; Event detection; Real-time systems; Roads; Text mining; Twitter; Traffic event detection; social sensing; text mining; tweet classification;
fLanguage :
English
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1524-9050
Type :
jour
DOI :
10.1109/TITS.2015.2404431
Filename :
7057672
Link To Document :
بازگشت