DocumentCode :
176105
Title :
Alignment condition-based adaptive iterative learning control for robot manipulators
Author :
Qiang Chen ; Fangzheng Xue
Author_Institution :
Sch. of Autom., Chongqing Univ., Chongqing, China
fYear :
2014
fDate :
May 31 2014-June 2 2014
Firstpage :
2129
Lastpage :
2134
Abstract :
In this work, a novel adaptive iterative learning control scheme is designed for robot manipulators with uncertain parameter and external perturbation under alignment condition. The analysis of convergence of proposed control law is based on composite energy function in the iteration domain containing position tracking error, velocity tracking error and parameter estimation error along both the time and iteration axis. Rigorous analysis indicate that both position tracking error and velocity tracking error converge to zero under alignment condition by compensation for the uncertain disturbances. Simulation results also confirm and verify the effectiveness of the proposed method.
Keywords :
adaptive control; compensation; control system synthesis; convergence; iterative methods; learning systems; manipulators; parameter estimation; perturbation techniques; position control; velocity control; adaptive iterative learning control scheme; alignment condition-based adaptive iterative learning control; compensation; composite energy function; control law; convergence; external perturbation; iteration domain containing position tracking error; parameter estimation error; rigorous analysis; robot manipulators; uncertain parameter; velocity tracking error; Adaptive systems; Convergence; Joints; Manipulators; Trajectory; Vectors; Adaptive iterative learning control; Alignment condition; Composite energy function; Robot manipulators;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (2014 CCDC), The 26th Chinese
Conference_Location :
Changsha
Print_ISBN :
978-1-4799-3707-3
Type :
conf
DOI :
10.1109/CCDC.2014.6852519
Filename :
6852519
Link To Document :
بازگشت