Title :
Modeling and Characterization of an Electrowetting-Based Single-Mode Fiber Variable Optical Attenuator
Author :
Dudus, Anna ; Blue, Robert ; Zagnoni, Michele ; Stewart, George ; Uttamchandani, Deepak
Author_Institution :
Centre for Microsyst. & Photonics, Univ. of Strathclyde, Glasgow, UK
Abstract :
We report an optofluidics-based variable optical attenuator (VOA) employing a tapered side-polished single-mode optical fiber attached to an electrowetting-on-dielectric (EWOD) platform. The side polishing of the fiber cladding gives access to the evanescent field of the guided mode, while the EWOD platform electrically controls the stepwise translation of a liquid droplet along the variable thickness polished cladding of the fiber. The penetration of the evanescent field into the droplet leads to tunneling of optical power from the fiber core to the droplet, from where it is radiatively lost. As a result of the variable cladding thickness, the position of the droplet along the length of the polished fiber determines the degree of penetration of the evanescent field into the droplet. The droplet position can be electrically changed; thus, controlling the optical power loss from the fiber. This approach has been used to demonstrate an optofluidic continuous-fiber VOA typically providing up to 26 dB of broadband attenuation in the 1550-nm transmission window, with a wavelength dependent loss less than 1.1 dB. In this paper, we present the theoretical modeling and experimental characterization of the system, discussing the influence of the design parameters on the performance of this VOA.
Keywords :
drops; optical attenuators; optical design techniques; optical fibre cladding; optical fibre losses; broadband attenuation; design parameters; droplet position; electrowetting-based single-mode fiber variable optical attenuator; electrowetting-on-dielectric platform; evanescent field penetration; fiber core; guided mode; liquid droplet; optical power loss; optical power tunnel- ing; optofluidic continuous-fiber VOA; optofluidics-based variable optical attenuator; stepwise translation; tapered side-polished single-mode optical fiber; theoretical modeling; transmission window; variable thickness polished fiber cladding; wavelength dependent loss; Attenuation; Optical attenuators; Optical fiber devices; Optical fiber theory; Optical surface waves; Electrowetting; Optical fiber devices; Single mode optical fiber; Variable optical attenuator; electrowetting; optical fiber devices; single mode optical fiber;
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
DOI :
10.1109/JSTQE.2014.2382298