Title :
Recursive Hybrid Cramér–Rao Bound for Discrete-Time Markovian Dynamic Systems
Author :
Chengfang Ren ; Galy, Jerome ; Chaumette, Eric ; Vincent, Francois ; Larzabal, Pascal ; Renaux, Alexandre
Author_Institution :
LSS 3, Univ. Paris-Sud, Orsay, France
Abstract :
In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. As a contribution to the hybrid estimation framework, we introduce a recursive hybrid Cramér-Rao lower bound for discrete-time Markovian dynamic systems depending on unknown deterministic parameters. Additionally, the regularity conditions required for its existence and its use are clarified.
Keywords :
Markov processes; array signal processing; discrete time systems; recursive estimation; statistical analysis; discrete time Markovian dynamic system; hybrid parameter estimation; nonrandom parameter estimation; parameter vector estimation; random parameter estimation; recursive hybrid Cramer-Rao lower bound; statistical signal processing; unknown deterministic parameter; Bayes methods; Electronic mail; Estimation; Indexes; Noise; Parameter estimation; Vectors; Parameter estimation; dynamic Markovian systems; estimation error lower bound;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2015.2412173