Title :
Feature Extraction and Selection for Emotion Recognition from EEG
Author :
Jenke, Robert ; Peer, Angelika ; Buss, Martin
Author_Institution :
Inst. of Autom. Control Eng., Tech. Univ. Munchen, Munich, Germany
fDate :
July-Sept. 1 2014
Abstract :
Emotion recognition from EEG signals allows the direct assessment of the “inner” state of a user, which is considered an important factor in human-machine-interaction. Many methods for feature extraction have been studied and the selection of both appropriate features and electrode locations is usually based on neuro-scientific findings. Their suitability for emotion recognition, however, has been tested using a small amount of distinct feature sets and on different, usually small data sets. A major limitation is that no systematic comparison of features exists. Therefore, we review feature extraction methods for emotion recognition from EEG based on 33 studies. An experiment is conducted comparing these features using machine learning techniques for feature selection on a self recorded data set. Results are presented with respect to performance of different feature selection methods, usage of selected feature types, and selection of electrode locations. Features selected by multivariate methods slightly outperform univariate methods. Advanced feature extraction techniques are found to have advantages over commonly used spectral power bands. Results also suggest preference to locations over parietal and centro-parietal lobes.
Keywords :
electroencephalography; emotion recognition; feature extraction; feature selection; human computer interaction; learning (artificial intelligence); medical signal processing; EEG signals; centro-parietal lobes; electrode locations; feature extraction techniques; feature selection method; human-machine-interaction; machine learning techniques; multivariate methods; neuro-scientific findings; parietal lobes; self-recorded data set; spectral power bands; univariate methods; Discrete wavelet transforms; Electrodes; Electroencephalography; Emotion recognition; Feature extraction; Time-frequency analysis; EEG; Emotion recognition; electrode selection; feature extraction; feature selection; machine learning;
Journal_Title :
Affective Computing, IEEE Transactions on
DOI :
10.1109/TAFFC.2014.2339834