DocumentCode :
1764366
Title :
An Asymptotically Optimal Push–Pull Method for Multicasting Over a Random Network
Author :
Swamy, Vasuki Narasimha ; Bhashyam, Srikrishna ; Sundaresan, R. ; Viswanath, Pramod
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA
Volume :
59
Issue :
8
fYear :
2013
fDate :
Aug. 2013
Firstpage :
5075
Lastpage :
5087
Abstract :
We consider all-cast and multicast flow problems where either all of the nodes or only a subset of the nodes may be in session. Traffic from each node in the session has to be sent to every other node in the session. If the session does not consist of all the nodes, the remaining nodes act as relays. The nodes are connected by undirected links whose capacities are independent and identically distributed random variables. We study the asymptotics of the capacity region (with network coding) in the limit of a large number of nodes, and show that the normalized sum rate converges to a constant almost surely. We then provide a decentralized push-pull algorithm that asymptotically achieves this normalized sum rate without network coding.
Keywords :
multicast communication; network coding; random processes; relay networks (telecommunication); all-cast flow problems; asymptotically optimal push-pull method; capacity region; decentralized push-pull algorithm; identically distributed random variables; multicast flow problems; multicasting; network coding; normalized sum rate converges; random network; relays; remaining nodes; undirected links; Encoding; Multicast communication; Network coding; Peer-to-peer computing; Random variables; Relays; Upper bound; All-cast; Erdős–Rényi random graph; Steiner tree; broadcast; flows; matching; multicast; network coding; random graph; tree packing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2013.2253543
Filename :
6482634
Link To Document :
بازگشت