• DocumentCode
    1765393
  • Title

    A Sufficient Condition for Arbitrary Eigenvalue Assignment in Linear Descriptor Systems by Output Feedback

  • Author

    Biao Zhang

  • Author_Institution
    Dept. of Math., Harbin Inst. of Technol., Harbin, China
  • Volume
    58
  • Issue
    8
  • fYear
    2013
  • fDate
    Aug. 2013
  • Firstpage
    2060
  • Lastpage
    2064
  • Abstract
    The problem of eigenvalue assignment in the linear descriptor system Emathdotx=Ax+Bu, y=Cx via output feedback is considered. It is shown that mp > rank(E) ( m and p are respectively the numbers of inputs and outputs of the system) is a sufficient condition for generic real output feedback eigenvalue assignability. The result is the best possible for general m,p,rank(E). In general, the assignment is achieved not in an exact sense, but in arbitrarily small neighborhoods around a given set of eigenvalues.
  • Keywords
    controllability; eigenvalues and eigenfunctions; feedback; linear systems; generic real-output feedback eigenvalue assignability; linear descriptor systems; sufficient condition; system input; system output; Closed loop systems; Eigenvalues and eigenfunctions; Jacobian matrices; Linear systems; Output feedback; Polynomials; Vectors; Closed-loop regularity; eigenvalue assignment; linear descriptor systems; output feedback;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2013.2268204
  • Filename
    6530682