Title :
Rock and soil mechanics model parameter inversion method based on computational intelligence
Author_Institution :
Guangxi Vocational & Tech. Inst. of Ind., Nanning, China
Abstract :
The optimal estimation of geotechnical mechanics model parameters is observed by comparing the difference of the model of information data and the theoretical model. Parameter inversion method based on gradient search method drawback is that there is no guarantee that the search to the global optimal solution, the main reason of which lies in the existence of observation error and model error. By defining the objective function, the parameters identification inverse problem into optimization problem. A numerical example and the engineering practical application results show that the established parameter inversion method based on computational intelligence has good robustness and global convergence properties.
Keywords :
genetic algorithms; geotechnical engineering; parameter estimation; rocks; search problems; soil; structural engineering; computational intelligence; geotechnical mechanics model parameters; gradient search method; model error; objective function; observation error; parameter inversion method; parameters identification inverse problem; rock mechanics model; soil mechanics model; Computational modeling; Genetic algorithms; Genetics; Optimization; Parameter estimation; Sociology; Computational Intelligence; Genetic Algorithm; Geotechnical Engineering; Parameter Inversion;
Conference_Titel :
Advanced Research and Technology in Industry Applications (WARTIA), 2014 IEEE Workshop on
Conference_Location :
Ottawa, ON
DOI :
10.1109/WARTIA.2014.6976381