DocumentCode :
176790
Title :
Online object tracking based on sparse subspace representation
Author :
Bao-Yun Wang ; Fei Chen ; Ping Deng
Author_Institution :
Coll. of Autom., Nanjing Univ. of Posts & Telecommun., Nanjing, China
fYear :
2014
fDate :
May 31 2014-June 2 2014
Firstpage :
3975
Lastpage :
3980
Abstract :
In this paper, we propose an online object tracking algorithm, which combines incremental subspace learning with sparse representation. In the particle filter framework, we take Gaussian random sampling and use sub-sampling to filter the samples. We update the state of the training set through incremental PCA algorithm, then construct sparse subspace model using the eigenvectors of the training set. Before adding the tracking result into the training set, we adopt occlusion detection method to estimate. This paper implements a real-time tracking algorithm in various complex environments like deformation, rotation, illumination change and occlusion. Meanwhile, the tracking box can adjust with the scale and rotation of the object.
Keywords :
Gaussian processes; eigenvalues and eigenfunctions; image representation; learning (artificial intelligence); object detection; object tracking; particle filtering (numerical methods); principal component analysis; sampling methods; Gaussian random sampling; eigenvectors; incremental PCA algorithm; incremental subspace learning; object rotation; object scale; occlusion detection method; online object tracking; particle filter framework; real-time tracking algorithm; sparse subspace representation; subsampling; tracking box; training set; Automation; Educational institutions; Electronic mail; Object tracking; Principal component analysis; Telecommunications; Training; incremental subspace; online object tracking; sparse representation; training set;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (2014 CCDC), The 26th Chinese
Conference_Location :
Changsha
Print_ISBN :
978-1-4799-3707-3
Type :
conf
DOI :
10.1109/CCDC.2014.6852876
Filename :
6852876
Link To Document :
بازگشت