• DocumentCode
    1768437
  • Title

    Banknote reconstruction from fragments using quadratic programming and SIFT points

  • Author

    Po-Hung Wu ; Jian-Jiun Ding ; Jing Ming Guo ; Pei-Jen Kang ; Chang-En Pu

  • Author_Institution
    Grad. Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei, Taiwan
  • fYear
    2014
  • fDate
    1-5 June 2014
  • Firstpage
    570
  • Lastpage
    573
  • Abstract
    Due to a variety of accidents, banknotes may be broken into several fragments. These fragments are usually stained, burned, partially lost, and twisted, which makes banknote reconstruction a hard problem. Since the fragments are always not intact, the traditional edge and texture based fragment assembling methods cannot be applied here. In this paper, we develop a framework for banknote reconstruction. We applied the techniques of SIFT point matching, RANSAC, and feature-based alignment. Moreover, convex quadratic optimization based on maximizing the reconstructed area and avoiding overlapping is adopted. Several simulations are given to demonstrate the effectiveness of our framework.
  • Keywords
    bank data processing; convex programming; image matching; image reconstruction; quadratic programming; transforms; RANSAC; SIFT point matching; banknote reconstruction; convex quadratic optimization; feature-based alignment; quadratic programming; Feature extraction; Image reconstruction; Mathematical model; Quadratic programming; Shape; Transforms; SIFT points; feature-based alignment; fragment assembling; fragment reconstruction; quadratic programming;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems (ISCAS), 2014 IEEE International Symposium on
  • Conference_Location
    Melbourne VIC
  • Print_ISBN
    978-1-4799-3431-7
  • Type

    conf

  • DOI
    10.1109/ISCAS.2014.6865199
  • Filename
    6865199