DocumentCode :
1769311
Title :
Lithium-ion battery end-of-discharge time prediction using particle filtering algorithm
Author :
Zhenwei Zhou ; Yun Huang ; Yudong Lu ; Zhengyu Shi ; Xin Li ; Jiliang Wu ; Hui Li
Author_Institution :
China Electron. Product Reliability & Environ. Testing Res. Inst., Guangzhou, China
fYear :
2014
fDate :
24-27 Aug. 2014
Firstpage :
658
Lastpage :
663
Abstract :
The particle filtering (PF) algorithm is employed to predict Lithium-ion battery end-of-discharge time. The work voltage degradation model with six states is presented in the nonlinear state-space form, and the states such as model unknown parameters and work voltage are estimated by PF algorithm. Then the end-of-discharge time with probability distribution is further given by PF algorithm. The experimental example demonstrates the effectiveness of the proposed approach.
Keywords :
particle filtering (numerical methods); secondary cells; state-space methods; statistical distributions; PF algorithm; lithium-ion battery end-of-discharge time prediction; nonlinear state-space form; particle filtering algorithm; probability distribution; voltage degradation model; Batteries; Discharges (electric); Mathematical model; Noise; Prediction algorithms; Probability distribution; Voltage measurement; Lithium-ion battery; end-of-discharge time; particle filtering algorithm; probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Prognostics and System Health Management Conference (PHM-2014 Hunan), 2014
Conference_Location :
Zhangiiaijie
Print_ISBN :
978-1-4799-7957-8
Type :
conf
DOI :
10.1109/PHM.2014.6988255
Filename :
6988255
Link To Document :
بازگشت