Title :
Avionics sensor fusion for small size unmanned aircraft Sense-and-Avoid
Author :
Ramasamy, S. ; Sabatini, Roberto ; Gardi, Alessandro
Author_Institution :
RMIT Univ. - SAMME, Melbourne, VIC, Australia
Abstract :
Cooperative and non-cooperative Sense-and-Avoid (SAA) systems are key enablers for Unmanned Aircraft (UA) to routinely access non-segregated airspace. In this paper some state-of-the-art cooperative and non-cooperative sensor and system technologies are investigated for small size UA applications, and the associated multisensor data fusion techniques are discussed. Non-cooperative sensors including both passive and active Forward Looking Sensors (FLS) and cooperative systems including Traffic Collision Avoidance System (TCAS), Automatic Dependent Surveillance - Broadcast (ADS-B) system and/or Mode C transponders are part of the proposed SAA architecture. After introducing the SAA system processes, the key mathematical models for data fusion are presented. The Interacting Multiple Model (IMM) algorithm is used to estimate the state vector of the intruders and this is propagated to predict the future trajectories using a probabilistic model. Adopting these mathematical models, conflict detection and resolution strategies for both cooperative and un-cooperative intruders are identified. Additionally, a detailed error analysis is performed to determine the overall uncertainty volume in the airspace surrounding the intruder tracks. This is accomplished by considering both the navigation and the tracking errors affecting the measurements and translating them to unified range and bearing uncertainty descriptors, which apply both to cooperative and non-cooperative scenarios. Detailed simulation case studies are carried out to evaluate the performance of the proposed SAA approach on a representative host platform (AEROSONDE UA) and various intruder platforms, including large transport aircraft and other UA. Results show that the required safe separation distance is always maintained when the SAA process is performed from ranges in excess of 500 metres.
Keywords :
aircraft navigation; autonomous aerial vehicles; avionics; collision avoidance; cooperative systems; error analysis; probability; sensor fusion; ADS-B system; AEROSONDE UA; FLS; IMM algorithm; SAA systems; TCAS; active forward looking sensors; associated multisensor data fusion techniques; automatic dependent surveillance-broadcast system; avionics sensor fusion; bearing uncertainty descriptors; conflict detection; cooperative intruders; cooperative sensor; error analysis; interacting multiple model algorithm; intruder tracks; large transport aircraft; mathematical models; mode C transponders; noncooperative sensor; nonsegregated airspace; passive forward looking sensors; probabilistic model; representative host platform; resolution strategy; small size unmanned aircraft sense-and-avoid system; state vector estimation; tracking errors; traffic collision avoidance system; uncertainty volume; uncooperative intruders; unmanned aircraft; Collision avoidance; Ellipsoids; Laser radar; Navigation; Radar tracking; Trajectory; Uncertainty; collision avoidance; conflict detection and resolution; cooperative systems; non-coopertive sensors; sense-and-avoid; sensor fusion;
Conference_Titel :
Metrology for Aerospace (MetroAeroSpace), 2014 IEEE
Conference_Location :
Benevento
DOI :
10.1109/MetroAeroSpace.2014.6865933