DocumentCode :
1772068
Title :
Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology
Author :
Jun Xu ; Lei Xiang ; Renlong Hang ; Jianzhong Wu
Author_Institution :
Nanjing Univ. of Inf. Sci. & Technol., Nanjing, China
fYear :
2014
fDate :
April 29 2014-May 2 2014
Firstpage :
999
Lastpage :
1002
Abstract :
In this paper, a Stacked Sparse Autoencoder (SSAE) based framework is presented for nuclei classification on breast cancer histopathology. SSAE works very well in learning useful high-level feature for better representation of input raw data. To show the effectiveness of proposed framework, SSAE+Softmax is compared with conventional Softmax classifier, PCA+Softmax, and single layer Sparse Autoencoder (SAE)+Softmax in classifying the nuclei and non-nuclei patches extracted from breast cancer histopathology. The SSAE+Softmax for nuclei patch classification yields an accuracy of 83.7%, F1 score of 82%, and AUC of 0.8992, which outperform Softmax classifier, PCA+Softmax, and SAE+Softmax.
Keywords :
biological organs; cancer; cellular biophysics; feature extraction; image classification; image coding; medical image processing; SSAE based framework; breast cancer histopathology; high-level feature extraction; nuclei patch classification; stacked sparse autoencoder; Breast cancer; Decoding; Neural networks; Principal component analysis; Testing; Training; Breast Cancer Histopathology; Deep learning; Sparse Autoencoder;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on
Conference_Location :
Beijing
Type :
conf
DOI :
10.1109/ISBI.2014.6868041
Filename :
6868041
Link To Document :
بازگشت