DocumentCode :
1772892
Title :
Global analysis of a delay virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response
Author :
Lisha Liang ; Yongmei Su
Author_Institution :
Sch. of Math. & Phys., Univ. of Sci. & Technol. Beijing, Beijing, China
fYear :
2014
fDate :
24-27 Oct. 2014
Firstpage :
18
Lastpage :
22
Abstract :
In this paper, an HIV-1 infection model with Beddington-DeAngelis infection rate and CTL immune response is investaged. We derive the basic reproduction number R0 for the viral infection model. By constructing suitable Lyapunov functionals and using LaSalle invariant principle for the delay differential equations, we find when R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable. And if the CTL immune reproductive number R1 ≤ 1, the immune-free equilibrium and the endemic equilibrium are globally asymptotically stable.
Keywords :
delays; differential equations; epidemics; microorganisms; nonlinear dynamical systems; Beddington-DeAngelis incidence rate; CTL immune reproductive number; CTL immune response; HIV-1 infection model; LaSalle invariant principle; Lyapunov functionals; delay differential equations; delay virus dynamics model; endemic equilibrium; global analysis; globally asymptotically stable equilibrium; immune free equilibrium; infection free equilibrium; reproduction number; viral infection model; Computational modeling; Gold; Immune system; Beddington-DeAngelis; CTL immune response; Global stabiliy; LaSalle invariant principle; Lyapunov functional;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems Biology (ISB), 2014 8th International Conference on
Conference_Location :
Qingdao
Type :
conf
DOI :
10.1109/ISB.2014.6990424
Filename :
6990424
Link To Document :
بازگشت