DocumentCode :
177644
Title :
Prediction-based load control and balancing for feature extraction in visual sensor networks
Author :
Eriksson, E. ; Dan, G. ; Fodor, V.
Author_Institution :
Sch. of Electr. Eng., KTH R. Inst. of Technol., Stockholm, Sweden
fYear :
2014
fDate :
4-9 May 2014
Firstpage :
674
Lastpage :
678
Abstract :
We consider controlling and balancing the processing load in a visual sensor network (VSN) used for detecting local features, such as BRISK. We formulate a prediction problem with random missing data, and propose two regression-based algorithms for data reconstruction. Numerical results illustrate the performance of the proposed algorithms, and show that backward regression combined with the last value predictor can be used for controlling and balancing the processing load in VSNs with good performance.
Keywords :
feature extraction; prediction theory; regression analysis; resource allocation; sensors; BRISK; VSN; data reconstruction; feature extraction; local feature detection; prediction problem; prediction-based load balancing; prediction-based load control; random missing data; regression-based algorithms; visual sensor networks; Cameras; Computer vision; Image reconstruction; Process control; Vectors; Video sequences; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location :
Florence
Type :
conf
DOI :
10.1109/ICASSP.2014.6853681
Filename :
6853681
Link To Document :
بازگشت