DocumentCode :
177791
Title :
Spectral compressive sensing with model selection
Author :
Zhenqi Lu ; Rendong Ying ; Sumxin Jiang ; Zenghui Zhang ; Peilin Liu ; Wenxian Yu
Author_Institution :
Dept. of Electr. Eng., Shanghai Jiao Tong Univ., Shanghai, China
fYear :
2014
fDate :
4-9 May 2014
Firstpage :
1045
Lastpage :
1049
Abstract :
The performance of existing approaches to the recovery of frequency-sparse signals from compressed measurements is limited by the coherence of required sparsity dictionaries and the discretization of frequency parameter space. In this paper, we adopt a parametric joint recovery-estimation method based on model selection in spectral compressive sensing. Numerical experiments show that our approach outperforms most state-of-the-art spectral CS recovery approaches in fidelity, tolerance to noise and computation efficiency.
Keywords :
compressed sensing; maximum likelihood estimation; parameter space methods; frequency parameter space discretization; frequency-sparse signals; model selection; parametric joint recovery-estimation method; sparsity dictionaries; spectral compressive sensing; Compressed sensing; Discrete Fourier transforms; Estimation; Frequency estimation; Noise measurement; Sensors; Compressive sensing; frequency-sparse signal; maximum likelihood estimator; model selection; parametric estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location :
Florence
Type :
conf
DOI :
10.1109/ICASSP.2014.6853756
Filename :
6853756
Link To Document :
بازگشت