Title :
Second order refinements for the classical capacity of quantum channels with separable input states
Author :
Tomamichel, Marco ; Tan, Vincent Y. F.
Author_Institution :
Centre for Quantum Technol., Nat. Univ. of Singapore, Singapore, Singapore
fDate :
June 29 2014-July 4 2014
Abstract :
We study the non-asymptotic fundamental limits for transmitting classical information over memoryless quantum channels, i.e. we investigate the amount of information that can be transmitted when the channel is used a finite number of times and a finite average decoding error is permissible. We show that, if we restrict the encoder to use ensembles of separable states, the non-asymptotic fundamental limit admits a Gaussian approximation that illustrates the speed at which the rate of optimal codes converges to the Holevo capacity as the number of channel uses tends to infinity. To do so, several important properties of quantum information quantities, such as the capacity-achieving output state, the divergence radius, and the channel dispersion, are generalized from their classical counterparts. Further, we exploit a close relation between classical-quantum channel coding and quantum binary hypothesis testing and rely on recent progress in the non-asymptotic characterization of quantum hypothesis testing and its Gaussian approximation.
Keywords :
Gaussian processes; channel coding; decoding; memoryless systems; quantum communication; Gaussian approximation; Holevo capacity; channel dispersion; divergence radius; finite average decoding error; memoryless quantum channels; nonasymptotic fundamental limits; quantum binary hypothesis; quantum channel coding; quantum information quantities; second order refinements; Channel capacity; Channel coding; Dispersion; Entropy; Quantum mechanics; Testing;
Conference_Titel :
Information Theory (ISIT), 2014 IEEE International Symposium on
Conference_Location :
Honolulu, HI
DOI :
10.1109/ISIT.2014.6874811