DocumentCode :
177953
Title :
An Extended Isomap for Manifold Topology Learning with SOINN Landmarks
Author :
Qiang Gan ; Furao Shen ; Jinxi Zhao
Author_Institution :
Dept. of Comput. Sci. & Technol., Nanjing Univ., Nanjing, China
fYear :
2014
fDate :
24-28 Aug. 2014
Firstpage :
1579
Lastpage :
1584
Abstract :
This paper presents an extended Isomap algorithm called SL-Isomap (SOINN Landmark Isomap). We adopt SOINN (Self-Organizing Incremental Neural Network) algorithm to choose the reasonable number of landmarks automatically. SOINN landmarks are able to represent topological structure of unsupervised data in the high dimensional input space. Then L-Isomap (Landmark Isomap) algorithm is used to find low dimensional manifolds from high dimensional data based on chosen landmarks. SL-Isomap solves the problem of selecting the right number and position of landmarks automatically thus reduces short-circuit errors. It also realizes data compression and nonlinear dimensionality reduction at the same time. Experiments demonstrate its promising results compared with other variants of L-Isomap.
Keywords :
data compression; self-organising feature maps; topology; unsupervised learning; L-Isomap algorithm; SL-Isomap; SOINN Landmark Isomap; data compression; extended Isomap algorithm; high dimensional data; manifold topology learning; nonlinear dimensionality reduction; self-organizing incremental neural network algorithm; short-circuit errors; topological structure representation; unsupervised data; Clustering algorithms; Euclidean distance; Face; Level measurement; Manifolds; Noise; Principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2014 22nd International Conference on
Conference_Location :
Stockholm
ISSN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2014.280
Filename :
6976990
Link To Document :
بازگشت