DocumentCode :
1779957
Title :
Generalized binary independent component analysis
Author :
Painsky, Amichai ; Rosset, Samuel ; Feder, Meir
Author_Institution :
Sch. of Math. Sci., Tel Aviv Univ., Tel Aviv, Israel
fYear :
2014
fDate :
June 29 2014-July 4 2014
Firstpage :
1326
Lastpage :
1330
Abstract :
Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are as statistically independent as possible from each other. Usually the ICA framework assumes a model according to which the observations are generated (generative function, additive noise). Binary ICA (BICA) is a special case of ICA in which both the observations and the independent components are over the binary field GF(2). In this work we introduce a generalized BICA framework in which an observation vector is decomposed to its independent components (as much as possible) with no prior assumption on the way it was generated. We propose several theorems and show that this NP hard problem can be accurately solved with a branch and bound search tree algorithm, or tightly approximated with a series of linear programs. BICA was shown to have applications in many domains including medical diagnosis, multi-cluster assignment, network tomography and internet resource management. We suggest that BICA also applies in source coding; we argue that instead of generating statistically independent prediction errors, as in predictive coding, an improved encoder shall assemble a vector of observations and apply the generalized BICA on it. This is shown to achieve improved performance at the cost of introducing some time delay (working in batch).
Keywords :
computational complexity; independent component analysis; linear programming; tree searching; BICA framework; Internet resource management; NP hard problem; additive noise; binary field GF(2); binary independent component analysis; branch and bound search tree algorithm; generative function; independent prediction errors; linear programs; medical diagnosis; multicluster assignment; multidimensional random vector; network tomography; observation vector; predictive coding; source coding; statistical method; time delay; Approximation algorithms; Complexity theory; Entropy; Information theory; Linear approximation; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory (ISIT), 2014 IEEE International Symposium on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/ISIT.2014.6875048
Filename :
6875048
Link To Document :
بازگشت