DocumentCode :
1780429
Title :
Decoding of quasi-cyclic codes up to a new lower bound on the minimum distance
Author :
Zeh, Alexander ; San Ling
Author_Institution :
Comput. Sci. Dept., Technion - Israel Inst. of Technol., Haifa, Israel
fYear :
2014
fDate :
June 29 2014-July 4 2014
Firstpage :
2584
Lastpage :
2588
Abstract :
A new lower bound on the minimum Hamming distance of linear quasi-cyclic codes over finite fields is proposed. It is based on spectral analysis and generalizes the Semenov-Trifonov bound in a similar way as the Hartmann-Tzeng bound extends the BCH approach for cyclic codes. Furthermore, a syndrome-based algebraic decoding algorithm is given.
Keywords :
BCH codes; algebraic codes; cyclic codes; decoding; linear codes; spectral analysis; BCH approach; Hartmann-Tzeng bound; Semenov-Trifonov bound; finite fields; linear quasicyclic codes; minimum Hamming distance; spectral analysis; syndrome-based algebraic decoding algorithm; Decoding; Eigenvalues and eigenfunctions; Matrix decomposition; Polynomials; Spectral analysis; Bound on the minimum distance; efficient decoding; quasi-cyclic code; spectral analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory (ISIT), 2014 IEEE International Symposium on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/ISIT.2014.6875301
Filename :
6875301
Link To Document :
بازگشت