DocumentCode :
1780761
Title :
A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed Length
Author :
Kane, D.M.
Author_Institution :
Dept. of Math., Stanford Univ., Stanford, CA, USA
fYear :
2014
fDate :
11-13 June 2014
Firstpage :
217
Lastpage :
228
Abstract :
We develop and analyze a new family of pseudorandom generators for polynomial threshold functions with respect to the Gaussian distribution. In particular, for any fixed degree we develop a generator whose seed length is subpolynomial in the error parameter, ε. We get particularly nice results for degree 1 and degree 2 threshold functions, in which cases our seed length is O(log(n) + log3/2(1/ε)) and exp(O(log2/3(1/ε))), respectively.
Keywords :
Gaussian distribution; computational complexity; random number generation; Gaussian distribution; degree 1 threshold functions; degree 2 threshold functions; error parameter; polynomial threshold functions; pseudorandom generator; subpolynomial seed length; Approximation methods; Gaussian distribution; Generators; Jacobian matrices; Polynomials; Random variables; Standards; Polynomial threshold function; Pseudorandom generator;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity (CCC), 2014 IEEE 29th Conference on
Conference_Location :
Vancouver, BC
Type :
conf
DOI :
10.1109/CCC.2014.30
Filename :
6875491
Link To Document :
بازگشت