DocumentCode :
178083
Title :
Video Segmentation Descriptors for Event Recognition
Author :
Trichet, R. ; Nevatia, R.
Author_Institution :
Inst. Robot. & Intell. Syst., USC, Los Angeles, CA, USA
fYear :
2014
fDate :
24-28 Aug. 2014
Firstpage :
1940
Lastpage :
1945
Abstract :
This paper presents a new video motion descriptor based on a multi-scale video segmentation to provide a multi-layered output as well as connections with the rich interactions that occur between objects at the semantic level. We also put the emphasis on relationships between motion clusters by providing a new relative motion descriptor encapsulating relative motion patterns within a local spatio-temporal neighborhood. Experimental results on the challenging TRECVID MED11 event recognition dataset validate the approach.
Keywords :
image motion analysis; image recognition; image segmentation; video signal processing; TRECVID MED11 event recognition dataset; event recognition; local spatio-temporal neighborhood; motion clusters; multilayered output; multiscale video segmentation; relative motion descriptor; relative motion patterns; semantic level; video motion descriptor; video segmentation descriptors; Color; Context modeling; Feature extraction; Histograms; Motion segmentation; Robustness; Tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2014 22nd International Conference on
Conference_Location :
Stockholm
ISSN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2014.339
Filename :
6977051
Link To Document :
بازگشت