Title :
A sub-terahertz real aperture imaging radar
Author :
Fritz, Jaka ; Scally, Larry ; Gasiewski, Albin J. ; Kun Zhang
Author_Institution :
Colorado Eng., Inc., Colorado Springs, CO, USA
Abstract :
Due to the lack of high-power sources along with strong electromagnetic absorption by water vapor at frequencies between ~100 GHz and ~10 THz, there are very few radar systems, or any other systems for that matter, operating in this region of the spectrum. For this reason, it is sometimes referred to as the terahertz gap. Source technology, however, is improving, thus facilitating radar systems operating in this new frontier of the electromagnetic spectrum. At the lower end of this spectral region near the millimeter/submillimeter transition, components are more readily available and atmospheric attenuation is moderate in comparison to higher frequencies. Utilizing components that can generate on the order of 50 mW of power, a real aperture radar for imaging surfaces up to several hundred meters has been developed. Transmitting a vertically oriented fan beam to scan the Field of View (FOV) in azimuth and receiving at two vertically, displaced locations with identical fan beams forming an interferometer, three dimensional images of the surface topography (in range, azimuth and height) can be generated. This paper describes the design of the prototype system and presents initial results, expanding on prior work [1].
Keywords :
electromagnetic wave absorption; radar imaging; radar interferometry; surface topography; terahertz wave imaging; FOV; atmospheric attenuation; electromagnetic absorption; electromagnetic spectrum; field of view; identical fan beams; interferometer; millimeter-submillimeter transition; power 50 mW; source technology; sub-terahertz real aperture imaging radar; surface topography; terahertz gap; three dimensional images; vertically oriented fan beam; water vapor; Imaging; Radar imaging; Radio frequency; Receivers; Surface topography; imaging radar; interferometry; real beam imaging; terahertz;
Conference_Titel :
Radar Conference, 2014 IEEE
Conference_Location :
Cincinnati, OH
Print_ISBN :
978-1-4799-2034-1
DOI :
10.1109/RADAR.2014.6875772