Title :
Effectiveness of combined time-frequency imageand signal-based features for improving the detection and classification of epileptic seizure activities in EEG signals
Author :
Boubchir, Larbi ; Al-Maadeed, Somaya ; Bouridane, Ahmed
Author_Institution :
Dept. of Comput. Sci. & Digital Technol., Univ. of Northumbria, Newcastle upon Tyne, UK
Abstract :
This paper presents new time-frequency (T-F) features to improve the detection and classification of epileptic seizure activities in EEG signals. Most previous methods were based only on signal features derived from the instantaneous frequency and energies of EEG signals generated from different spectral sub-bands. The proposed features are based on T-F image descriptors, which are extracted from the T-F representation of EEG signals, are considered and processed as an image using image processing techniques. The idea of the proposed feature extraction method is based on the application of Otsu´s thresholding algorithm on the T-F image in order to detect the regions of interest where the epileptic seizure activity appears. The proposed T-F image related-features are then defined to describe the statistical and geometrical characteristics of the detected regions. The results obtained on real EEG data suggest that the use of T-F image based-features with signal related-features improve significantly the performance of the EEG seizure detection and classification by up to 5% for 120 EEG signals, using a multi-class SVM classifier.
Keywords :
computational geometry; electroencephalography; feature extraction; image segmentation; medical image processing; medical signal detection; seizure; signal classification; signal representation; statistical analysis; support vector machines; time-frequency analysis; EEG signals; Otsu´s thresholding algorithm; T-F image descriptors; T-F image related-features; T-F representation; combined time-frequency image-based features; combined time-frequency signal-based features; epileptic seizure activity classification improvement; epileptic seizure activity detection improvement; feature extraction method; geometrical characteristics; image processing techniques; multiclass SVM classifier; performance improvement; signal related-features; statistical characteristics; time-frequency features; Accuracy; Electroencephalography; Feature extraction; Image segmentation; Time-frequency analysis;
Conference_Titel :
Control, Decision and Information Technologies (CoDIT), 2014 International Conference on
Conference_Location :
Metz
DOI :
10.1109/CoDIT.2014.6996977