DocumentCode :
1783889
Title :
Decoupled estimation of the parameters and hyperparameters of generalized stochastic constraint TARMA models
Author :
Avendano-Valencia, L.D. ; Fassois, S.D.
Author_Institution :
Dept. of Mech. & Aeronaut. Eng., Univ. of Patras., Patras, Greece
fYear :
2014
fDate :
21-23 May 2014
Firstpage :
429
Lastpage :
432
Abstract :
Time-dependent ARMA models are a preferred tool the identification of systems with non-stationary characteristics. In order to improve the tracking abilities of the model, the evolution of the time-dependent parameters is defined by either deterministic or stochastic paths. The Generalized linear Stochastic Constraint (GSC) TARMA models define the parameter evolutions by linear difference equations excited by white Gaussian noise. The estimation of these models requires the dual estimation of the time-dependent parameters and the model hyperparameters. The estimation of this models is difficult due to the non-linear coupling between its parameters and hyperparameters. This work features a Maximum A Posteriori decoupled estimation method, where the MAP objective function derived from GSC-TARMA model is sequentially optimized with respect to the parameters and the hyperparameters. The proposed estimation approach is explained and evaluated in the problem of the identification of wind turbine vibration response signals.
Keywords :
autoregressive moving average processes; linear differential equations; maximum likelihood estimation; signal processing; stochastic processes; GSC-TARMA model; MAP objective function; decoupled parameter estimation; deterministic paths; generalized linear stochastic constraint TARMA models; hyperparameter estimation; linear difference equations; maximum a posteriori decoupled estimation method; nonlinear coupling; nonstationary characteristics; nonstationary signal; stochastic parameter evolution; stochastic paths; system identification; time-dependent ARMA models; time-dependent parameter dual estimation; white Gaussian noise; wind turbine vibration response signal identification; Estimation; Kalman filters; Linear programming; Mathematical model; Stochastic processes; Vibrations; Wind turbines; Non-stationary system identification; stochastic parameter evolution; time-dependent ARMA models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on
Conference_Location :
Athens
Type :
conf
DOI :
10.1109/ISCCSP.2014.6877905
Filename :
6877905
Link To Document :
بازگشت