Title :
Task-adaptive inertial parameter estimation of rigid-body dynamics with modeling error for model-based control using covariate shift adaptation
Author :
Matsubara, Takamitsu ; Takada, Hiroaki ; Sugimoto, Kazuya
Author_Institution :
Grad. Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Ikoma, Japan
Abstract :
In this paper we consider the inertial parameter estimation problem of rigid-body dynamics with modeling errors for model-based control. Our approach focuses on the task-specific subspace, i.e., it estimates the task-adaptive inertial parameter set to be more suitable for accurately performing a given task. We present a task-adaptive inertial parameter estimation procedure using a modern statistical supervised learning framework called covariate shift adaptation equipped with a direct importance estimation method. The effectiveness of the proposed method is investigated on the trajectory tracking task with an anthropomorphic manipulator model in simulations.
Keywords :
learning (artificial intelligence); manipulators; parameter estimation; anthropomorphic manipulator model; covariate shift adaptation; direct importance estimation method; model-based control; modeling error; rigid-body dynamics; statistical supervised learning framework; task-adaptive inertial parameter estimation; trajectory tracking task; Adaptation models; Parameter estimation; Robots; Solid modeling; Training; Training data; Trajectory;
Conference_Titel :
Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on
Conference_Location :
Besacon
DOI :
10.1109/AIM.2014.6878123