DocumentCode :
178610
Title :
VC-Dimension of Rule Sets
Author :
Yildiz, O.T.
Author_Institution :
Dept. of Comput. Eng., Isik Univ., Istanbul, Turkey
fYear :
2014
fDate :
24-28 Aug. 2014
Firstpage :
3576
Lastpage :
3581
Abstract :
In this paper, we give and prove lower bounds of the VC-dimension of the rule set hypothesis class where the input features are binary or continuous. The VC-dimension of the rule set depends on the VC-dimension values of its rules and the number of inputs.
Keywords :
learning (artificial intelligence); set theory; VC-dimension values; binary input features; continuous input features; lower bounds; rule set hypothesis class; Computers; Decision trees; Labeling; Pattern recognition; Statistical learning; Training; Vectors; Rule sets; VC-Dimension;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2014 22nd International Conference on
Conference_Location :
Stockholm
ISSN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2014.615
Filename :
6977327
Link To Document :
بازگشت