DocumentCode :
1786800
Title :
Algorithm for designing fractional order PDμ controller via integer order controller
Author :
Mendiola-Fuentes, J. ; Campos-Canton, E.
Author_Institution :
Div. de Mat. Aplic., Inst. Potosino de Investig. Cienc. y Tecnol., San Luis Potosí, Mexico
fYear :
2014
fDate :
12-14 Nov. 2014
Firstpage :
1
Lastpage :
5
Abstract :
A fractional PD controller is denoted by PDμ where μ is an additional parameter which increases the flexibility of tuning. In this work, we present an algorithm about how to tune a fractional PD controller which is applied to a fractional plant. Firstly we consider an integer approximation of the fractional plant in order to use the method of dominant roots, thus we can find the tuning parameters (Kp and Td correspond to the proportional and differentiation constants, respectively) given the specifications of setting time and damping ratio. Once the parameters Kp and Td are set, the unknown parameter μ of the fractional controller is found by computing the error between the response of the fractional plant and its corresponding integer approximation. The value of μ parameter is determined by the minimum error and this values is used to tune again the parameter Td. Satisfactory results are shown using this algorithm applied to fractional controllers for fractional plants.
Keywords :
PD control; approximation theory; control system synthesis; damping ratio; dominant roots method; fractional order PDμ controller design; fractional plant; integer approximation; integer order controller; proportional-derivative controller; setting time; tuning parameter; Algorithm design and analysis; Approximation algorithms; Least squares approximations; PD control; Transfer functions; Tuning; Control algorithm; PD control; dominant roots method; fractional order controller;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Central America and Panama Convention (CONCAPAN XXXIV), 2014 IEEE
Conference_Location :
Panama City
Type :
conf
DOI :
10.1109/CONCAPAN.2014.7000441
Filename :
7000441
Link To Document :
بازگشت