DocumentCode
178706
Title
Task specific continuous word representations for mono and multi-lingual spoken language understanding
Author
Anastasakos, Tasos ; Young-Bum Kim ; Deoras, A.
Author_Institution
Microsoft Corp., Sunnyvale, CA, USA
fYear
2014
fDate
4-9 May 2014
Firstpage
3246
Lastpage
3250
Abstract
Models for statistical spoken language understanding (SLU) systems are conventionally trained using supervised discriminative training methods. In many cases, however, labeled data necessary for these supervised techniques is not readily available necessitating a laborious data collection and annotation effort. This often results into data sets that are not expansive enough to cover adequately all patterns of natural language phrases that occur in the target applications. Word embedding features alleviate data and feature sparsity issues by learning mathematical representation of words and word associations in the continuous space. In this work, we present techniques to obtain task and domain specific word embeddings and show their usefulness over those obtained from generic unsupervised data. We also show how we transfer these embeddings from one language to another enabling training of a multilingual spoken language understanding system.
Keywords
learning (artificial intelligence); natural language processing; SLU system; data annotation; data collection; domain specific word embeddings; monolingual spoken language understanding; multilingual spoken language understanding; natural language phrases; supervised discriminative training methods; task specific continuous word representation; Context; Encyclopedias; Games; Motion pictures; Semantics; Training; Vocabulary; named entity recognition; natural language processing; spoken language understanding; vector space models; word embedding;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location
Florence
Type
conf
DOI
10.1109/ICASSP.2014.6854200
Filename
6854200
Link To Document