DocumentCode :
1787651
Title :
Ridge regression and Kalman filtering for target tracking in wireless sensor networks
Author :
Mahfouz, Sandy ; Mourad-Chehade, Farah ; Honeine, Paul ; Farah, Joumana ; Snoussi, Hichem
Author_Institution :
Inst. Charles Delaunay, Univ. de Technol. de Troyes, Troyes, France
fYear :
2014
fDate :
22-25 June 2014
Firstpage :
237
Lastpage :
240
Abstract :
This paper introduces an original method for target tracking in wireless sensor networks that combines machine learning and Kalman filtering. A database of radio-fingerprints is used, along with the ridge regression learning method, to compute a model that takes as input RSSI information, and yields, as output, the positions where the RSSIs are measured. This model leads to a position estimate for each target. The Kalman filter is used afterwards to combine the model´s estimates with predictions of the target´s positions based on acceleration information, leading to more accurate ones.
Keywords :
Kalman filters; filtering theory; learning (artificial intelligence); regression analysis; target tracking; telecommunication computing; wireless sensor networks; Kalman filtering; acceleration information; input RSSI information; machine learning; position estimation; radio-fingerprints database; ridge regression learning method; target tracking; wireless sensor networks; Acceleration; Computational modeling; Kalman filters; Noise; Target tracking; Vectors; Wireless sensor networks; Kalman filter; RSSI; WSN; radio-fingerprinting; ridge regression; tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th
Conference_Location :
A Coruna
Type :
conf
DOI :
10.1109/SAM.2014.6882384
Filename :
6882384
Link To Document :
بازگشت