DocumentCode :
1787657
Title :
Optimal offloading control for a mobile device based on a realistic battery model and semi-Markov decision process
Author :
Shuang Chen ; Yanzhi Wang ; Pedram, Massoud
Author_Institution :
Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
fYear :
2014
fDate :
2-6 Nov. 2014
Firstpage :
369
Lastpage :
375
Abstract :
Due to the limited battery capacity in mobile devices, the concept of mobile cloud computing (MCC) is proposed where some applications are offloaded from the local device to the cloud for higher energy efficiency. The portion of applications or tasks to be offloaded for remote processing should be judiciously determined. In this paper, the problem of optimal task dispatch, transmission, and execution in the MCC system is considered. Dynamic voltage and frequency scaling (DVFS) is applied to the local mobile processor, whereas the RF transmitter of the mobile device can choose from multiple modulation schemes and bit rates. The power consumptions of the mobile components that cannot be directly controlled, e.g., the touch screen, GPU, audio codec, and I/O ports, are also accounted for through capturing their correlation with the mobile processor and RF transmitter. Finally, a realistic and accurate battery model is adopted in this work in order to estimate the battery energy loss rate in a more accurate way. This paper presents a semi-Markov decision process (SMDP)-based optimization framework, with the actions of different DVFS levels and modulation schemes/transimission bit rates and the objective of minimizing both the energy drawn from the battery and the average latency in request servicing. This paper derives the optimal solution, including the optimal DVFS policy, offloading rate, and transmission scheme, using linear programming combined with a heuristic search. Experiments are conducted on Qualcomm Snapdragon Mobile Development Platform MSM8660 to find the correlations among the power consumptions of the CPU, RF components, and other components. Simulation results show that the proposed optimal solution consistently outperforms some baseline algorithms.
Keywords :
Markov processes; cloud computing; mobile computing; optimisation; DVFS; MCC; MSM8660; Qualcomm Snapdragon mobile development platform; SMDP-based optimization framework; battery capacity; dynamic voltage; frequency scaling; mobile cloud computing; mobile device; mobile processor; optimal offloading control; realistic battery model; semi-Markov decision process; Batteries; Frequency modulation; Mobile communication; Mobile handsets; Power demand; Radio frequency; Transmitters;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Aided Design (ICCAD), 2014 IEEE/ACM International Conference on
Conference_Location :
San Jose, CA
Type :
conf
DOI :
10.1109/ICCAD.2014.7001378
Filename :
7001378
Link To Document :
بازگشت