DocumentCode :
178831
Title :
Transformation-invariant dictionary learning for classification with 1-Sparse representations
Author :
Yuzuguler, Ahmet Caner ; Vural, Esra ; Frossard, Pascal
Author_Institution :
Dept. of Electr. & Electron. Eng., Middle East Tech. Univ., Ankara, Turkey
fYear :
2014
fDate :
4-9 May 2014
Firstpage :
3562
Lastpage :
3566
Abstract :
Sparse representations of images in well-designed dictionaries can be used for effective classification. Meanwhile, training data available in most realistic settings are likely to be exposed to geometric transformations, which poses a challenge for the design of good dictionaries. In this work, we study the problem of learning class-representative dictionaries from geometrically transformed image sets. In order to efficiently take account of arbitrary geometric transformations in the learning, we adopt a representation of the dictionaries in an analytic basis. Then, the proposed algorithm learns atoms that are attracted to the samples of their own class while being repelled from the samples of other classes so that the discrimination between different classes is promoted. The dictionary learning objective is formulated such that it enhances the class-discrimination capabilities of individual atoms rather than the ones of the subspaces they generate, which renders the designed dictionaries especially suitable for fast classification of query images with very sparse approximations. Experimental results demonstrate the performance of the proposed method in handwritten digit recognition applications.
Keywords :
handwritten character recognition; image classification; image representation; 1-sparse representation; class-discrimination capabilities; class-representative dictionaries; geometrically transformed image sets; handwritten digit recognition applications; image representation; images classification; transformation-invariant dictionary learning; Approximation methods; Dictionaries; Estimation; Indexes; Training; Training data; Vectors; Dictionary learning; image classification; transformation-invariance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location :
Florence
Type :
conf
DOI :
10.1109/ICASSP.2014.6854264
Filename :
6854264
Link To Document :
بازگشت