DocumentCode :
1788585
Title :
Design, implementation and security analysis of Hardware Trojan Threats in FPGA
Author :
Shila, Devu Manikantan ; Venugopal, Vinaya
Author_Institution :
United Technol. Res. Center, Hartford, CT, USA
fYear :
2014
fDate :
10-14 June 2014
Firstpage :
719
Lastpage :
724
Abstract :
Hardware Trojan Threats (HTTs) are stealthy components embedded inside integrated circuits (ICs) with an intention to attack and cripple the IC similar to viruses infecting the human body. Previous efforts have focused essentially on systems being compromised using HTTs and the effectiveness of physical parameters including power consumption, timing variation and utilization for detecting HTTs. We propose a novel metric for hardware Trojan detection coined as HTT detectability metric (HDM) that uses a weighted combination of normalized physical parameters. HTTs are identified by comparing the HDM with an optimal detection threshold; if the monitored HDM exceeds the estimated optimal detection threshold, the IC will be tagged as malicious. As opposed to existing efforts, this work investigates a system model from a designer perspective in increasing the security of the device and an adversary model from an attacker perspective exposing and exploiting the vulnerabilities in the device. Using existing Trojan implementations and Trojan taxonomy as a baseline, seven HTTs were designed and implemented on a FPGA testbed; these Trojans perform a variety of threats ranging from sensitive information leak, denial of service to beat the Root of Trust (RoT). Security analysis on the implemented Trojans showed that existing detection techniques based on physical characteristics such as power consumption, timing variation or utilization alone does not necessarily capture the existence of HTTs and only a maximum of 57% of designed HTTs were detected. On the other hand, 86% of the implemented Trojans were detected with HDM. We further carry out analytical studies to determine the optimal detection threshold that minimizes the summation of false alarm and missed detection probabilities.
Keywords :
field programmable gate arrays; integrated logic circuits; invasive software; FPGA testbed; HDM; HTT detectability metric; HTT detection; ICs; RoT; Trojan taxonomy; denial of service; hardware Trojan detection technique; hardware Trojan threats; integrated circuits; missed detection probability; normalized physical parameters; optimal detection threshold; power consumption; root of trust; security analysis; sensitive information leak; summation of false alarm; timing variation; Encryption; Field programmable gate arrays; Hardware; Power demand; Timing; Trojan horses; Design; Hardware Trojans; Resiliency; Security;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications (ICC), 2014 IEEE International Conference on
Conference_Location :
Sydney, NSW
Type :
conf
DOI :
10.1109/ICC.2014.6883404
Filename :
6883404
Link To Document :
بازگشت