DocumentCode :
1790667
Title :
Improved Robust PCA using low-rank denoising with optimal singular value shrinkage
Author :
Moore, Brian E. ; Nadakuditi, Raj Rao ; Fessler, Jeffrey A.
Author_Institution :
Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, USA
fYear :
2014
fDate :
June 29 2014-July 2 2014
Firstpage :
13
Lastpage :
16
Abstract :
We study the robust PCA problem of reliably recovering a low-rank signal matrix from a signal-plus-noise-plus-outliers matrix. We analytically characterize the extent to which the singular vectors of the signal-plus-noise-plus-outliers matrix can be degraded by outliers and discuss why a recently proposed method for robust PCA that exploits outlier sparsity to improve low-rank estimation will produce suboptimal low-rank matrix estimates in the presence of noise. Next, we propose a new iterative algorithm for robust PCA that utilizes an optimal, data-driven low-rank matrix estimator (OptShrink). Finally, we show that the proposed approach yields superior background subtraction on a computer vision dataset.
Keywords :
iterative methods; matrix algebra; principal component analysis; signal denoising; singular value decomposition; PCA; computer vision dataset; data-driven low-rank matrix estimator; iterative algorithm; low-rank denoising; low-rank estimation; low-rank signal matrix; optimal singular value shrinkage; principal component analysis; signal-plus-noise-plus-outlier matrix sparsity; Matrix decomposition; Noise reduction; Principal component analysis; Robustness; Signal processing algorithms; Sparse matrices; Vectors; low-rank plus sparse decomposition; random matrix theory; robust PCA;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing (SSP), 2014 IEEE Workshop on
Conference_Location :
Gold Coast, VIC
Type :
conf
DOI :
10.1109/SSP.2014.6884563
Filename :
6884563
Link To Document :
بازگشت