DocumentCode :
1790694
Title :
A non-parametric model for Ballistocardiography
Author :
Yao, Yiying ; Schiefer, J. ; van Waasen, S. ; Schiek, M.
Author_Institution :
Central Inst. ZEA-2 - Electron. Syst., Res. Center Julich, Julich, Germany
fYear :
2014
fDate :
June 29 2014-July 2 2014
Firstpage :
69
Lastpage :
72
Abstract :
In this paper we propose a probabilistic generative model for the Ballistocardiogram (BCG), a physiological signal derived from the recoil of the body caused by the beating heart. The model uses a Gaussian process for the continuous BCG signal and an inverse Gaussian point process to model the latent discrete heartbeat sequence. Using this model artificial BCGs can be generated for the purpose of validating BCG analysis methods or to estimate missing data. We also demonstrate how accurate heartbeat estimates can be inferred from real BCGs by employing Markov chain Monte Carlo.
Keywords :
Gaussian processes; Markov processes; Monte Carlo methods; cardiology; medical signal processing; BCG analysis methods; Markov chain Monte Carlo method; artificial BCG signal; ballistocardiography; discrete heartbeat sequence; heart beating; heartbeat estimation; inverse Gaussian point process; nonparametric model; physiological signal; probabilistic generative model; Conferences; Data models; Electrocardiography; Gaussian processes; Heart beat; Mathematical model; Signal processing; Ballistocardiography; Gaussian process; Markov chain Monte Carlo;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing (SSP), 2014 IEEE Workshop on
Conference_Location :
Gold Coast, VIC
Type :
conf
DOI :
10.1109/SSP.2014.6884577
Filename :
6884577
Link To Document :
بازگشت