DocumentCode
1790712
Title
Minimum mean square error equalization on the 2-sphere
Author
Sadeghi, Parastoo ; Kennedy, Rodney A. ; Khalid, Zubair
Author_Institution
Res. Sch. of Eng., Australian Nat. Univ., Canberra, ACT, Australia
fYear
2014
fDate
June 29 2014-July 2 2014
Firstpage
101
Lastpage
104
Abstract
In this paper we consider the zero-forcing (ZF) and minimum mean square error (MMSE) criteria for signal recovery using linear operators as equalizers for signals observed on the 2-sphere that are subject to linear distortions and noise. The distortions considered are bounded operators and can include convolutions, rotations, spatial and spectral truncations, projections or combinations of these. Likewise the signal and noise are very general being modeled as anisotropic stochastic processes on the 2-sphere. In both the distortion model and signal model the findings in this paper are significantly more general than results that can be found in the literature. The MMSE equalizer is shown to reduce to the ZF equalizer when the distortion operator has an inverse and there is an absence of noise. The ability of the MMSE to recover a Mars topography map signal from a projection operator, which fails to have a ZF solution, is given as an illustration.
Keywords
least mean squares methods; signal processing; stochastic processes; 2-sphere; MMSE criteria; Mars topography map signal; ZF equalizer; anisotropic stochastic processes; convolutions; distortion operator; linear distortions; linear noise; linear operators; minimum mean square error equalization; projection operator; rotations; signal recovery; spatial truncations; spectral truncations; zero-forcing; Convolution; Covariance matrices; Distortion; Equalizers; Harmonic analysis; Noise; 2-sphere; MMSE; equalization; unit sphere; zero-forcing;
fLanguage
English
Publisher
ieee
Conference_Titel
Statistical Signal Processing (SSP), 2014 IEEE Workshop on
Conference_Location
Gold Coast, VIC
Type
conf
DOI
10.1109/SSP.2014.6884585
Filename
6884585
Link To Document