DocumentCode :
179082
Title :
Quasi-maximum likelihood estimator of multiple polynomial-phase signals
Author :
Simeunovic, Marko ; Djukanovic, Slobodan ; Djurovic, Igor
Author_Institution :
Electr. Eng. Dept., Univ. of Montenegro, Podgorica, Montenegro
fYear :
2014
fDate :
4-9 May 2014
Firstpage :
4200
Lastpage :
4203
Abstract :
This paper addresses the parameter estimation of multicomponent polynomial-phase signals (mc-PPSs). Recently proposed quasi-maximum likelihood (QML) method based on the short-time Fourier transform (STFT) has been extended to deal with multiple PPSs. The proposed method outperforms state-of-the-art parametric methods developed to deal with multiple PPSs in terms of robustness against noise, while attaining the Cramér-Rao lower bound.
Keywords :
Fourier transforms; maximum likelihood estimation; polynomials; signal processing; Cramer-Rao lower bound; QML method; STFT; mc-PPS; multicomponent polynomial-phase signal; parameter estimation; quasimaximum likelihood estimator; short-time Fourier transform; Estimation; Parameter estimation; Polynomials; Signal to noise ratio; Time-frequency analysis; Transforms; Polynomial-phase signal; non-parametric estimation; parameter estimation; quasi-ML; short-time Fourier transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location :
Florence
Type :
conf
DOI :
10.1109/ICASSP.2014.6854393
Filename :
6854393
Link To Document :
بازگشت