Title :
Web-based visual analytics for extreme scale climate science
Author :
Steed, Chad A. ; Evans, Katherine J. ; Harney, John F. ; Jewell, Brian C. ; Shipman, Galen ; Smith, Brian E. ; Thornton, Peter E. ; Williams, Dean N.
Author_Institution :
Oak Ridge Nat. Lab., Oak Ridge, TN, USA
Abstract :
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, inefficient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via new visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.
Keywords :
Internet; climatology; data analysis; data mining; data visualisation; geophysics computing; CAM simulations; CLM; HPC platforms; RESTful interface; Web-based visual analytics framework; climate data analysis tools; community atmosphere model; complex user interfaces; data movements; extreme scale climate science; hierarchical parameter spaces; interactive spatio-temporal data mining; large-scale community land model; large-scale earth system simulations; multiscale representations; static visualizations; visual navigation techniques; Analytical models; Atmospheric modeling; Computational modeling; Data models; Data visualization; Meteorology; Visual analytics;
Conference_Titel :
Big Data (Big Data), 2014 IEEE International Conference on
Conference_Location :
Washington, DC
DOI :
10.1109/BigData.2014.7004255