DocumentCode :
1791719
Title :
Spatiotemporal indexing techniques for efficiently mining spatiotemporal co-occurrence patterns
Author :
Aydin, Berkay ; Kempton, Dustin ; Akkineni, Vijay ; Gopavaram, Shaktidhar Reddy ; Pillai, Karthik Ganesan ; Angryk, Rafal
Author_Institution :
Dept. of Comput. Sci., Georgia State Univ., Atlanta, GA, USA
fYear :
2014
fDate :
27-30 Oct. 2014
Firstpage :
1
Lastpage :
10
Abstract :
In this paper, we investigate using specifically-designated spatiotemporal indexing techniques for mining cooccurrence patterns from spatiotemporal datasets with evolving polygon-based representations. Previously, suggested techniques for spatiotemporal pattern mining algorithms did not take spatiotemporal indexing techniques into account. We present a new framework for mining spatiotemporal co-occurrence patterns that can use various indexing techniques for efficiently accessing data. Two well-studied spatiotemporal indexing structures, Scalable and Efficient Trajectory Index (SETI) and Chebyshev Polynomial Indexing are currently implemented and available in our framework.
Keywords :
data mining; database indexing; spatiotemporal phenomena; Chebyshev polynomial indexing; SETI; data access; polygon-based representations; scalable-and-efficient trajectory index; spatiotemporal co-occurrence pattern mining; spatiotemporal datasets; spatiotemporal indexing structures; specifically-designated spatiotemporal indexing techniques; Atmospheric measurements; Data mining; Indexing; Particle measurements; Spatiotemporal phenomena; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Big Data (Big Data), 2014 IEEE International Conference on
Conference_Location :
Washington, DC
Type :
conf
DOI :
10.1109/BigData.2014.7004398
Filename :
7004398
Link To Document :
بازگشت