• DocumentCode
    179617
  • Title

    Optimal stochastic design for multi-parameter estimation problems

  • Author

    Soganci, Hamza ; Gezici, Sinan ; Arikan, Orhan

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
  • fYear
    2014
  • fDate
    4-9 May 2014
  • Firstpage
    5651
  • Lastpage
    5655
  • Abstract
    In this study, we consider performance improvement of an array of fixed estimators by using stochastic design techniques. The optimal design is investigated both in the absence and presence of an average power constraint. Two different performance criteria are considered; the average Bayes risk and the maximum Bayes risk. It is shown that the optimal stochastic parameter design results in a randomization between different numbers of parameter values depending on the type of the performance criterion.
  • Keywords
    Bayes methods; optimisation; parameter estimation; risk management; stochastic processes; average Bayes risk; average power constraint; fixed estimator array; maximum Bayes risk; multiparameter estimation problems; optimal stochastic design techniques; parameter values; performance criterion; performance improvement; randomization; Acoustics; Bismuth; Conferences; Decision support systems; Speech; Speech processing; Bayes risk; Stochastic parameter design; parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
  • Conference_Location
    Florence
  • Type

    conf

  • DOI
    10.1109/ICASSP.2014.6854685
  • Filename
    6854685