DocumentCode :
179617
Title :
Optimal stochastic design for multi-parameter estimation problems
Author :
Soganci, Hamza ; Gezici, Sinan ; Arikan, Orhan
Author_Institution :
Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
fYear :
2014
fDate :
4-9 May 2014
Firstpage :
5651
Lastpage :
5655
Abstract :
In this study, we consider performance improvement of an array of fixed estimators by using stochastic design techniques. The optimal design is investigated both in the absence and presence of an average power constraint. Two different performance criteria are considered; the average Bayes risk and the maximum Bayes risk. It is shown that the optimal stochastic parameter design results in a randomization between different numbers of parameter values depending on the type of the performance criterion.
Keywords :
Bayes methods; optimisation; parameter estimation; risk management; stochastic processes; average Bayes risk; average power constraint; fixed estimator array; maximum Bayes risk; multiparameter estimation problems; optimal stochastic design techniques; parameter values; performance criterion; performance improvement; randomization; Acoustics; Bismuth; Conferences; Decision support systems; Speech; Speech processing; Bayes risk; Stochastic parameter design; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location :
Florence
Type :
conf
DOI :
10.1109/ICASSP.2014.6854685
Filename :
6854685
Link To Document :
بازگشت