DocumentCode
179617
Title
Optimal stochastic design for multi-parameter estimation problems
Author
Soganci, Hamza ; Gezici, Sinan ; Arikan, Orhan
Author_Institution
Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
fYear
2014
fDate
4-9 May 2014
Firstpage
5651
Lastpage
5655
Abstract
In this study, we consider performance improvement of an array of fixed estimators by using stochastic design techniques. The optimal design is investigated both in the absence and presence of an average power constraint. Two different performance criteria are considered; the average Bayes risk and the maximum Bayes risk. It is shown that the optimal stochastic parameter design results in a randomization between different numbers of parameter values depending on the type of the performance criterion.
Keywords
Bayes methods; optimisation; parameter estimation; risk management; stochastic processes; average Bayes risk; average power constraint; fixed estimator array; maximum Bayes risk; multiparameter estimation problems; optimal stochastic design techniques; parameter values; performance criterion; performance improvement; randomization; Acoustics; Bismuth; Conferences; Decision support systems; Speech; Speech processing; Bayes risk; Stochastic parameter design; parameter estimation;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location
Florence
Type
conf
DOI
10.1109/ICASSP.2014.6854685
Filename
6854685
Link To Document