DocumentCode :
1796332
Title :
Agglomerative hierarchical kernel spectral data clustering
Author :
Mall, Raghvendra ; Langone, Rocco ; Suykens, Johan A. K.
Author_Institution :
ESAT/STADIUS, KU Leuven, Leuven, Belgium
fYear :
2014
fDate :
9-12 Dec. 2014
Firstpage :
9
Lastpage :
16
Abstract :
In this paper we extend the agglomerative hierarchical kernel spectral clustering (AH-KSC [1]) technique from networks to datasets and images. The kernel spectral clustering (KSC) technique builds a clustering model in a primal-dual optimization framework. The dual solution leads to an eigen-decomposition. The clustering model consists of kernel evaluations, projections onto the eigenvectors and a powerful out-of-sample extension property. We first estimate the optimal model parameters using the balanced angular fitting (BAF) [2] criterion. We then exploit the eigen-projections corresponding to these parameters to automatically identify a set of increasing distance thresholds. These distance thresholds provide the clusters at different levels of hierarchy in the dataset which are merged in an agglomerative fashion as shown in [1], [4]. We showcase the effectiveness of the AH-KSC method on several datasets and real world images. We compare the AH-KSC method with several agglomerative hierarchical clustering techniques and overcome the issues of hierarchical KSC technique proposed in [5].
Keywords :
eigenvalues and eigenfunctions; parameter estimation; pattern clustering; AH-KSC; BAF criterion; agglomerative hierarchical kernel spectral data clustering; balanced angular fitting criterion; eigen-decomposition; eigen-projections; eigenvectors; kernel evaluations; optimal model parameter estimation; out-of-sample extension property; primal-dual optimization framework; Clustering methods; Couplings; Data models; Equations; Kernel; Mathematical model; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Data Mining (CIDM), 2014 IEEE Symposium on
Conference_Location :
Orlando, FL
Type :
conf
DOI :
10.1109/CIDM.2014.7008142
Filename :
7008142
Link To Document :
بازگشت