DocumentCode :
1798210
Title :
A supervised approach to electric tower detection and classification for power line inspection
Author :
Sampedro, C. ; Martinez, Carlos ; Chauhan, Anamika ; Campoy, Pascual
Author_Institution :
CAR UPM-CSIC, Univ. Politec. de Madrid, Madrid, Spain
fYear :
2014
fDate :
6-11 July 2014
Firstpage :
1970
Lastpage :
1977
Abstract :
Inspection of power line infrastructures must be periodically conducted by electric companies in order to ensure reliable electric power distribution. Research efforts are focused on automating the power line inspection process by looking for strategies that satisfy the different requirements of the inspection: simultaneously detect transmission towers, check for defects, and analyze security distances. Following this direction, this paper proposes a supervised learning approach for solving the tower detection and classification problem, where HOG (Histograms of Oriented Gradients) features are used to train two MLP (multi-layer perceptron) neural networks. The first classifier is used for background-foreground segmentation, and the second multi-class MLP is used for classifying within 4 different types of electric towers. A thorough evaluation of the tower detection and classification approach has been carried out on image data from real inspections tasks with different types of towers and backgrounds. In the different evaluations, highly encouraging results were obtained. This shows that a learning-based approach is a promising technique for power line inspection.
Keywords :
feature extraction; image classification; image segmentation; inspection; learning (artificial intelligence); multilayer perceptrons; object detection; poles and towers; power cables; power distribution reliability; power engineering computing; HOG features; MLP neural networks; background-foreground segmentation; defect checking; electric companies; electric power distribution; electric tower classification problem; electric tower detection problem; histograms-of-oriented gradients; image data; multilayer perceptron neural networks; power line infrastructure inspection process; security distance analysis; supervised learning approach; transmission tower detection; Feature extraction; Histograms; Image segmentation; Inspection; Neural networks; Poles and towers; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), 2014 International Joint Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-6627-1
Type :
conf
DOI :
10.1109/IJCNN.2014.6889836
Filename :
6889836
Link To Document :
بازگشت